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Determination of the Thermodynamic Properties of
Liquid Ethanol from 193 to 263 K and up to 280 MPa
from Speed-of-Sound Measurements
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The sound velocity in liquid ethanol has been measured up to 280 MPa and at
temperatures between 193 and 263 K, using a phase-comparison, pulse-echo
technique operating at 2 MHz. The density, isothermal compressibility, isobaric
thermal expansion coefficient, and specific heat have been evaluated from the
measured speed of sound starting from the density and specific heat data
at 0.1 MPa and making use of a modified computational method originally
developed by Davis and Gordon. The derived density data have been used to
examine the validity of several empirical equations of state.
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1. INTRODUCTION

In a continuation of a program of systematic investigations of equations of
state and thermodynamic properties of organic liquids using speed-of-
sound measurements at high pressures, we have now studied liquid ethanol
at temperatures down to 193 K and pressures up to 280 MPa. Apart from
general interest in the precise evaluation of several important physical
properties of ethanol which have both industrial and fundamental impor-
tance, the present work was undertaken for the following reasons. First,
until now, the experimental investigation of thermodynamic properties of
liquid ethanol at high pressures has been restricted mostly to higher tem-
peratures, i.e., temperatures above the ice point. Qur own previous study
on ethanol covered temperatures from 273.15 to 333.15 K [1]. It was con-
sidered worthwhile to extend our speed-of-sound measurements in ethanol
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to lower temperatures, where there is a lack of accurate experimental data
of thermodynamic properties at high pressures. Second, we have recently
examined the validity of several empirical equations of state for organic
liquids at temperatures above 273.15 K, for which an extensive amount of
accurate experimental data is now available [2]. However, it was not
possible to extend this analysis to lower temperatures in view of the lack
of experimental data in that region. An important purpose of the present
work is to examine the validity of several empirical isothermal equations of
state for describing the p—p relation of ethanol at lower temperatures and
at high pressures.

2. EXPERIMENTAL METHOD

The material for the present investigation was obtained from BDH
Chemical Ltd., Poole, U.K. According to the specifications of the supplier,
the material was of Anala R grade and the purity of all samples was better
than 99.7% by volume, the main impurity being water (<0.2%). The
amount of water content was established by the well-known Karl Fischer
method based on iodimetric determination of water, while the amount
of other impurities (methanol, < 100 ppm; propanol, <100 ppm; higher
alcohols, <200 ppm} was found by gas-liquid chromatographic analysis.
The material was used without purification.

The speed-of-sound measurements in ethanol were performed with an
ultrasonic apparatus operating at 2 MHz. The design of the ultrasonic cell
(diameter, 4 cm; length, 20 cm) is based on a modified phase-comparison
pulse-echo method which made use of two reflectors (diameter, 1cm)
placed at distances of, respectively, 4 and 6 cm from a quartz transducer.
The complete description of the apparatus as well as the principle of its
operation can be found elsewhere [3,4]. In addition to the previously
described measures to reduce unwanted reflections, the back part of each
of the two reflectors now has a concave section so that reflections from the
corresponding surfaces are delayed in reaching the transducer, and conse-
quently, the pulse length can be increased. Further, appropriate corrections
were introduced in the measured data to account for the effects of diffrac-
tion on the transit time.

The high-pressure system consists of a steel pressure vessel containing
the ultrasonic cell, a mercury gas compressor coupled to a hydraulic oil
press for compressing the liquid, and a pressure balance for controlling and
measuring the pressure with an accuracy better than 1 in 10*. The steel
pressure vessel is surrounded by a demountable vacuum jacket, and
together, they form an adiabatic cryostat. A detailed description of the
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cryostat is given elsewhere [5]. The temperature is measured with a
calibrated Pt resistance thermometer to an estimated accuracy of 10 mK.
All temperatures are recorded on the IPTS 68 scale.

3. EXPERIMENTAL RESULTS ON SPEED
OF SOUND IN ETHANOL

The speed of sound in ethanol has been measured isothermaily as a
function of pressure in the temperature range between 193 and 263 K with
intervals of about 10K between the successive isotherms. For each
isotherm, the experimental data are recorded at 20-MPa pressure intervals
from 0.1 up to 280 MPa, The original experimental data of the sound speed
as a function of pressure and temperature are given in Table I The
absolute accuracy of the sound-velocity data is estimated to be better than
0.05%.

To derive the thermodynamic properties of ethanol from the present
experimental speed-of-sound data, the latter must be obtained as a function
of the pressure (p) and the temperature (7). This can be achieved by
choosing a double polynomial equation for the sound speed u, namely,
u(p, T), instead of a single polynomial equation for u(p) for each isotherm.
However, the function p(u, T) fits the data better than the function u(p, T)
and is also very convenient for the calculation of the equation of state data
[4]. Accordingly, the present experimental data on the sound velocity in
ethanol have been fitted, by a least-squares analysis, to

HMS

i ay(u— o) T (1)

where a; are the coefficients, and u,, the sound velocity (in m-s~') at
Po=0.1 MPa, is given as a function of the temperature by the expression

Uy =2516.901 — 5.651946 T + 3.616259 x 107°T2 (2)

The best fit was achieved with m =3 and n=2. The nine coefficients, a,,
are given in Table II. The average deviation for the best fit is found to be
0.5m-s !, while the maximum deviation is less than 1.6 m -s !, which are
equivalent to percentage deviations of 0.03 and 0.1, respectively. These
figures are higher than those found previously [1] for the high-temperature
(i.e., 273 to 333 K) experimental data of ethanol.
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Table II. Coefficients a;; of Eq. (1) for Ethanol in MPa-m~*.s'- K~/

i

j 1 2 : 3

0 537723983 x 10~ 703750309 x 104 — 415552543 x 1077
1 —1.85366620 x 1073 —420147674 x 10~° 402863289 x 10~?
2 1.93647937 x 10~ 829324241 x 10~° —8.85041814 x 10~ 12

4. DETERMINATION OF pV'T AND THERMODYNAMIC
PROPERTIES OF ETHANOL

The pV'T and thermodynamic properties of ethanol have been derived
from the experimental data of the sound velocity following the method
initiated by Davis and Gordon [6] and modified by Sun et al. [1, 47. It
is based on the following thermodynamic relations:

(0p/0p)r=1/u*+«’T/C, (3)
(0C,/0p)r= —(T/p)/[o* + (02/0T),] (4)

Here p is the density, C,, is the specific heat at constant pressure, and « is
the thermal expansion defined by a= —(1/p)(dp/¢T),. Equations (3) and
(4) form a set of first-order différential equations with initial values p,
(kg-m~?)and C,, (J-kg~'-K '), both at 0.1 MPa, which are given as a
function of temperature by the expressions

po=806.594 —0.845897 — 1.361 x 10 *T*— 5557 x 10~ °T" 5)
C,,=2015.6 —2.8976 x 10~ 'T— 1.2074 x 10 *T?+ 59629 x 10~°T* (6)

Equation (5) was developed from the experimental data for the density of
ethanol in the temperature range from 193 to 333 K obtained from recent
measurements at this laboratory [7], while expression (6) is derived from
the recent experimental data reported in literature [8]. These recent data
of C,, are in very good agreement (within a few tenths of a percent)
with the earlier data [9] used in the analysis of our high-temperature
experimental results of ethanol.

For each isotherm, the calculation of the density and the heat capacity
at high pressures starts from 0.1 MPa, at which the quantities a4, po, and
C,, are obtained by using Egs. (5) and (6). Then Eqs. (3) and (4) are
integrated numerically with respect to pressure. The proper choice of the
temperature and pressure intervals is found by gradual decrease of these
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intervals until the calculated values of p, o, and C, become constant. The
optimum pressure interval is about 2 MPa and the optimum temperature
interval is about 2.5 K.

The integration of the first term of the L.H.S. of Eq. (3), which con-
tains the speed of sound, makes a major contribution to the final results,
namely, more than 80 %, for this liquid. This was noted previously {17. In
the present calculation, the integration variable is changed from dp to du
and use is made of Eq. (1), so that the integral ja’u can be evaluated
analytically. As for the evaluation of the second term of the L.H.S. of
Eq. (3), we used a normal numerical procedure previously described [1].

The calculated values of p, «, and C, as a function of pressure and
temperature are given in Tables ITI-V. The data are tabulated at pressure
intervals of 20 MPa and at temperature intervals of 10 K. The number of
significant figures for the tabulated values does not indicate the absolute
accuracy but extra figures are retained to show the relative pressure and
temperature dependence of these quantities. This is justified since the
relative accuracy of the calculated values is higher than. the absolute
accuracy.

Additional thermodynamic properties of liquid ethanol have been
derived from present experimental data by using the following thermo-
dynamic identities:

(0H/op)r= (1/p)(1 —Ta) (7)
(0S/op)r= —afp (8)
Br=1/p)(1/u* + T*/C,) ©)
C,=C,/(1+ Te?u?/C,) (10)

where H is the enthalpy, § is the entropy, fr is the isothermal com-
pressibility, and C, is the specific heat at constant volume. The calculated
values of 8,, H, S, and C, are recorded in Tables VI-IX.

Owing to lack of accurate thermodynamic data at lower temperatures,
it is not possible to compare the present data on both the speed of sound
and the derived quantities with any previous measurement. However, it
was found from detailed comparisons of the equations-of-state data
obtained previously from speed-of-sound measurement and those of direct
measurements reported in the literature that the accuracy of the derived
density data depends mainly on the accuracy of the sound-speed and the
initial density data. Considering that the accuracy of the present speed-of-
sound data is better than 0.05% and that of initial density is better than
0.02% (cf. Ref. 2), it is found that the estimated accuracy of the density is
better than 0.05%.
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Table X. Coefficients C; (MPa-kg~'-m*.K~/) of Eq. (11) for Ethanol at
Low Temperature

Cio=3.663164 Cpo=1.891190 x 102 Cyo= —3.941484 x 105
Ci, = —9.967357 x 103 Cy = —6.364615x 105 Csy =4.223545x 107
Cy, = 4451192 x10~° Cyy =8.761412x 108 Cay = — 8.486796 x 10~ 10

5. EQUATION OF STATE OF ETHANOL

The derived densities of liquid ethanol have been used to examine
several empirical equations of state which are frequently used for describing
the volumetric behavior of liquids at elevated pressures. These equations
can be classified into two groups, namely, linear polynomial equations,
such as a pressure expansion and a density expansion, and nonlinear equa-
tions, such as the Tait equation, the Murnaghan equation, the quadratic
secant modulus equation, and the second-order equation of bulk modulus.
A review of equations of state for liquids can be found elsewhere [10]. The
purpose of the present work is to find the best equation of state for ethanol
at lower temperatures. The criteria for selection of the best equation
include (i) the standard relative deviation of the density and (ii) the
standard relative deviation of the isothermal compressibility. Since in the
ultrasonic method, the values of the isothermal compressibility can be
determined with a high accuracy, the second criterion is very useful for a
proper selection of the best equation of state of a liquid. The following two
equations of state give the best results:

P—DPo= Cilp—po)' T’ (11)

UM
R

i=1j

p=p0/[1—<i§1 A,T") 1n<1+p]§:0 B,Tf)] (12)

Here the coefficients C;, 4,, and B, have been evaluated from the
experimental data using a least-squares analysis, and the values of these
coefficients are given in Tables X and XI. Of these two equations, the den-

Table XI. Coefficients 4; (K~/) and B; (MPa~!.K ™) of Eq. (12) for Ethanol at
Low Temperature

A, =1.035409 x 10~! A, =3911956 x 10—° Ay = —2.507500 x 10~
B, =8.091073 x 10~ B,= —5581732x10~° B, =2.270875 x 107
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sity expansion equation of the form given by Eq. (12) is the more accurate
one, although the well-known Tait relation given by Eq. (11) is simpler and
provides fairly accurate results.
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